首页> 外文OA文献 >Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces
【2h】

Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces

机译:隐式定义域的有限元分析:基于任意参数曲面的精确表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present some novel results and ideas for robust and accurate implicit representation of geometric surfaces in finite element analysis. The novel contributions of this paper are threefold: (1) describe and validate a method to represent arbitrary parametric surfaces implicitly; (2) represent arbitrary solids implicitly, including sharp features using level sets and boolean operations; (3) impose arbitrary Dirichlet and Neumann boundary conditions on the resulting implicitly defined boundaries. The methods proposed do not require local refinement of the finite element mesh in regions of high curvature, ensure the independence of the domain's volume on the mesh, do not rely on boundary regularization, and are well suited to methods based on fixed grids such as the extended finite element method (XFEM). Numerical examples are presented to demonstrate the robustness and effectiveness of the proposed approach and show that it is possible to achieve optimal convergence rates using a fully implicit representation of object boundaries. This approach is one step in the desired direction of tying numerical simulations to computer aided design (CAD), similarly to the isogeometric analysis paradigm. © 2010 Elsevier B.V.
机译:在本文中,我们提出了一些新颖的结果和思想,用于有限元分析中几何表面的鲁棒且准确的隐式表示。本文的创新之处包括三个方面:(1)描述和验证一种隐式表示任意参数曲面的方法; (2)隐式表示任意实体,包括使用级别集和布尔运算的尖锐特征; (3)在结果隐式定义的边界上施加任意Dirichlet和Neumann边界条件。提出的方法不需要在高曲率的区域中对有限元网格进行局部细化,确保域体积在网格上的独立性,不依赖于边界正则化,并且非常适合基于固定网格的方法,例如扩展有限元方法(XFEM)。数值算例表明了所提方法的鲁棒性和有效性,并表明使用对象边界的完全隐式表示可以实现最佳收敛速度。这种方法是将数值模拟与计算机辅助设计(CAD)捆绑在一起的理想方向上的第一步,类似于等几何分析范例。 ©2010 Elsevier B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号